NAT and Firewall Traversal with STUN / TURN / ICE

Simon Perreault
Viagénie

mailto:Simon.Perreault@viagenie.ca
http://www.viagenie.ca

Copyright Viagénie 2008
Credentials

- Consultant in IP networking and VoIP at Viagénie.
- Developed Numb, a STUN / TURN server.
- Ported FreeSWITCH to IPv6.
- Co-ported Asterisk to IPv6.
- Developed many custom VoIP applications.
Plan

- The problem of NAT and firewalls in VoIP
- How STUN, TURN, and ICE solve it
- Asterisk specifics
- Wireshark traces
The Problem of NAT and Firewalls in VoIP

- Network address translators (NATs) are common devices that “hide” private networks behind public IP addresses.
- Connections can be initiated from the private network to the Internet, but not the other way around.
- Having separate addresses for signaling and media makes the situation worse.
A NAT device works by associating a public address and port with a private destination address and port.

<table>
<thead>
<tr>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.123.31.67 : 55123</td>
<td>192.168.1.2 : 5060</td>
</tr>
</tbody>
</table>

- Valid for duration of flow
 - Meaning of “flow” for UDP?
 - Must be kept alive.

- Useful to discover this address.
STUN

● Session Traversal Utilities for NAT (STUN): simple protocol for discovering the server-reflexive address.
 – Client: Where do you see me at?
 – Server: I see you at 206.123.31.67:55123.

● A STUN server is located in the public Internet or in an ISP's network when offered as a service.
 – Double NATs pose an interesting problem...
STUN Flow Diagram

STUN client 192.168.201.128

STUN Binding Request
Source: 192.168.201.128:45897

NAT 192.168.201.2 - 206.123.31.67

STUN Binding Response
Destination: 192.168.201.128:45897
Payload: 206.123.31.67:55123

STUN server 64.251.14.14

STUN Binding Request
Source: 206.123.31.67:55123

STUN Binding Response
Destination: 206.123.31.67:55123
Payload: 206.123.31.67:55123

Copyright Viagénie 2008
STUN

- It turns out that some NAT devices try to be clever by inspecting the payloads and changing all references to the server-reflexive address into the private address.
- STUN2 obfuscates the address by XORing it with a known value.
- TCP and UDP are supported over IPv4 and IPv6.
Server-Reflexive Address

- A client who knows its server-reflexive address could use it in place of its private address in the SIP headers.
 - Not the intended usage. See *sip-outbound* IETF draft.
- Intended usage: RTP ports.
- RTP port \rightarrow NAT binding \rightarrow STUN request
Symmetric NATs

- Some NAT devices only allow packets from the remote peer to reach the NATed peer:
 - Address dependent
 - Port dependent
 - Both
 - Implication: knowing server-reflexive address is useless.

- These NAT devices are called symmetric NATs.
 - Often “enterprise” NATs ⇒ many devices.
 - Significant presence, must be worked around.
TURN

• Makes devices behind symmetric NATs reachable.
 – Device initiates and maintains connection to relay.

• Traversal Using Relays around NAT (TURN)
 – Protocol between NATed device and relay.
 – Built on top of STUN.

• TURN server is located outside the NAT.
 – On the public Internet
 – or in an ISP's network when offered as a service by the ISP.
TURN Flow Diagram

TURN client
192.168.201.128

TURN Allocate

Allocate Response
Relayed address:
64.251.14.14:51292

Keep-alive

SIP Invite
SDP c= line:
64.251.14.14:51292

TURN Data Indication + RTP packet

NAT

TURN Allocate

Allocate Response
Relayed address:
64.251.14.14:51292

Allocate a port

SIP Invite
SDP c= line:
64.251.14.14:51292

TURN Allocate

TURN Data Indication + RTP packet

TURN server
64.251.14.14

RTP packet

SIP peer

Allocate a port

Copyright Viagénie 2008
Relayed Address

The address allocated by the TURN server is called the *relayed address*.
- TURN server communicates it to TURN client.
- TURN client communicates it to SIP peer.

The TURN client may use it in the SIP headers.

Intended usage: RTP ports.

RTP port \rightarrow NAT binding \rightarrow TURN allocation

TURN guarantees communication in all NAT cases unless there is an explicit firewall policy to prohibit its use.
Disadvantages of TURN

• TURN server is in forwarding path.
 – Requires a lot of bandwidth.
 – Server must remain available for the whole duration of the allocation.
 – Triangle routing results in longer path.

• Encapsulation.
 – Lowers MTU (not so much a problem for VoIP packets).
 – Additional headers consume a bit more bandwidth.
 – Firewall must inspect payload to discover real sender.

• Allocation must be kept alive.
Disadvantages of TURN

- ICMP not relayed.
 - No path MTU discovery.
- TTL not properly decremented.
 - Possibility of loops.
- DiffServ (DS) field not relayed.
- As of now only IPv4 and UDP.
Mitigating Mechanisms

- Availability and scalability provided by anycast.
 - Only used for discovery, server must remain up for the duration of the allocation.

- Channel mechanism for minimizing header size.
 - 4 bytes only.

- Permission mechanism enforced by TURN server.
 - Only peers previously contacted by client may send data to relayed address.
 - Firewall may “trust” the TURN server, no payload inspection.

- Keep TURN server close to NAT device.
 - Offered as a service by ISPs.
IPv4 and IPv6 Interoperability

- TURN will also be used to relay packets between IPv4 and IPv6.
- Alleviates load from the B2BUA.
 - Designed for relaying performance.
 - Anycast ensures scalability and reliability.
- TURNv6 draft still in progress.
Numb

- Numb is a STUN and TURN server developed by Viagénie.
 - Supports IPv4 and IPv6 in mixed scenarios.
 - Supports anycast.
- Free access at http://numb.viagenie.ca
- To install it in your own network, contact us: info@viagenie.ca
Connectivity Establishment

• Many addresses may be available:
 – Host addresses.
 – Server-reflexive address.
 – Relayed address.
 – Each in IPv4 and IPv6 flavour!
 – Each in UDP and TCP flavour!

• Which one to choose?

• Need for an automatic *connectivity establishment* mechanism.
Interactive Connectivity Establishment (ICE)

- Conceptually simple.
 - Gather all candidates (using STUN/TURN).
 - Order them by priority.
 - Communicate them to the callee in the SDP.
 - Do connectivity checks.
 - Stop when connectivity is established.

- Gnarly details:
 - Keep candidates alive.
 - Agree on priority.
 - Reduce delays and limit packets.
Peer-Reflexive Address

• Remember: Server-reflexive address useless with symmetric NAT.

• Address as seen from peer (instead of STUN server) is peer-reflexive address.
 - Works even with a symmetric NAT.
 • but not two of them (TURN still necessary).

• During ICE connectivity checks, peer-reflexive candidates are gathered and prepended to check list.

• Information reuse between ICE instances.
Examples

DNS server
206.123.31.2
2620:0:230:8000:2

STUN server
64.251.14.14
64.251.22.149

NAT + DNS server
206.123.31.67
2620:0:230:c000:67

SIP registrar
206.123.31.98
2620:0:230:c000:98

192.168.201.2
192.168.201.128
Asterisk Specifics

- NAT traversal in 1.6 was greatly enhanced
 - Can define internal NATed network (*localnet*)
 - Can determine external address either...
 - directly (*externip*)
 - via dynamic DNS (*externhost*)
 - with a **STUN client** (*stunaddr*)
- RFC 3581 rport mechanism (*nat = yes*)
- Don't re-INVITE internal <-> external calls (*canreinvite = nonat*)
Deployment

- ISPs are deploying STUN / TURN servers within their network.
- TURN a part of the IPv6 migration.
- SIP client vendors are implementing ICE.
- B2BUAs also should implement ICE.
Conclusion

• Discussed
 – The problem of NAT and firewalls in VoIP
 – How STUN, TURN, and ICE solve it
 • Obtaining a server reflexive address via STUN
 • Obtaining a relayed address via TURN
 • Telling the other party about these addresses via ICE
 • Making connectivity checks
 • Obtaining peer reflexive addresses
 • STUN / TURN / ICE stack too thick? Use IPv6!
Questions?

Simon.Perreault@viagenie.ca

This presentation: http://www.viagenie.ca/publications/
STUN / TURN server: http://numb.viagenie.ca

References:
ICE draft: http://tools.ietf.org/html/draft-ietf-mmusic-ice

Copyright Viagénie 2008