
 Copyright Viagénie 2008

La Téléphonie IPv6

Simon Perreault

Viagénie

{mailto|sip}:simon.perreault@viagenie.ca

http://www.viagenie.ca

Présenté au AMUG à Montréal le 18 décembre 2008

http://www.viagenie.ca/

 Copyright Viagénie 2008

Qui suis-je?

● Consultant en réseautique et VoIP chez Viagénie.
● Co-auteur du port de Asterisk à Ipv6

(voir http://www.asteriskv6.org)
● Auteur du port de FreeSWITCH à IPv6

(intégré depuis version 1.0.1)
● Auteur de Numb, un serveur STUN/TURN

(voir http://numb.viagenie.ca)
● Participation à Astricon, Cluecon, SIPit, IETF, etc.
● Développé plusieurs applications VoIP sur mesure.

http://numb.viagenie.ca/

 Copyright Viagénie 2008

Cette présentation

● Cette présentation est un mélange de...
– Contenu original en français
– Extraits de présentations faites à Astricon 2006 et 2008 et

Cluecon 2008 par Simon Perreault et Marc Blanchet

● Mille excuses pour les diapos en anglais!

Copyright Viagénie 2008 4

Plan
● IPv6
● Why IPv6 and VoIP
● New API
● Asteriskv6
● FreeSWITCHv6
● Lessons Learned
● Conclusion

● NAT traversal si le temps le permet

Copyright Viagénie 2008 5

IPv6?
● New version of IP:

– fixes IPv4 issues
– adds functionality

● Addresses:
– 128 bits
– written in hex with : as separator; method to compress the

writing: all zeros = ::
– 2001:db8:1:1::1
– In URL: enclose with []: sip:jdoe@[2001:db8:1:1::1]:5060
– Loopback is ::1
– Link(Subnet,vlan,...) mask is fixed: /64
– Unique private address space: no collision of private

networks

Copyright Viagénie 2008 6

IPv6?
● Addresses (cont):

– Scoped addressing: link scope, site scope. An enabled IPv6
stack has already an IPv6 address (link scope) on each
interface, even if no IPv6 external connectivity.

– Multiple addresses per interface: link-scope, global, [site,...]
– No NAT.

● Mobility: keep connections up even when host
changes IP address

● Autoconfiguration: Stateless address allocation
without DHCP server. Routers announce the link
prefix on the link. Hosts use their MAC address for the
host part of the address

● Integrated IPsec
● Many more features

Copyright Viagénie 2008 7

IPv6 Market
● IPv4 address depletion: < 25% of remaining address

space. Predictions of exhaustion for 2009-2011.

● Asia
– Japan: see http://www.v6pc.jp

– China: through NGN. Olympics is important milestone.

● US government:
– Mandating IPv6 for 2008 in all agencies

– DoD is leading

● Providers (short list):
– Teleglobe/VSNL, NTT, AT&T, GlobalCrossing,...

– Comcast: can't address all the devices (100M+) with IPv4.
Deploying IPv6. (DOCSIS 3.0 is IPv6-ready).

Copyright Viagénie 2008 8

IPv6 Support

● Support on OS (stack and API):
– Same (new) API everywhere!!! ;-)
– Since: Linux 2.4, FreeBSD 4.X, MacOSX 10.2, Windows XP,

Solaris 8, ...

● Opensource Apps: Apache 2.0+ (1.3 with a patch),
Sendmail, Postfix, Open SSH, Xfree/Xorg, ...
– Now Asterisk and FreeSWITCH... ;-)

● Support on network gear: Cisco, Juniper, Checkpoint,
Quagga/Zebra, ...

Copyright Viagénie 2008 9

Why IPv6 and VoIP?

● IPv6 and SIP
– delivers direct end-2-end reachability between any host.
– No NAT, no STUN, no TURN, no ICE, no MIDCOM, = no

complexity, “just works”.
– True end-2-end media path.
– Much easier to deploy. A VoIP-IPv6 deployment in Japan

found important cost reductions because of the ease of
installation and support.

● To have an IPv6-enabled application, such as a PBX,
need to convert to the new API.

Copyright Viagénie 2008 10

New API
● New API for IPv6 [RFC3493, RFC3542]

– Makes the application version independent. The stack
chooses which IP version will be used for that connection.

– A ported application becomes IP version unaware.
– No change to socket(), bind(), listen(), accept(), connect(),

recv(), send(), close()...

● Changes:
– Struct hostent replaced by struct addrinfo

● Addrinfo is a linked list of addresses
● It contains everything needed to initialize a socket.

Copyright Viagénie 2008 11

New API

● Changes:
– sockaddr record

● sockaddr_in : IPv4
● sockaddr_in6 : IPv6 only. Do not use.
● sockaddr_storage: version independent for memory

allocations.
● sockaddr *: for casting

– gethostbyname() replaced by getaddrinfo()
– gethostbyaddr(), inet_addr(), inet_ntoa() replaced by

getnameinfo()

● More considerations:
– Parsing URLs: need to take care of the IPv6 syntax (i.e. [])
– Parsing and storing IP addresses

Copyright Viagénie 2008 12

Exemples de code

Copyright Viagénie 2008 13

Établir une connexion TCP
(vieux style IPv4 seulement)

int tcp_connect(const char* host, unsigned short port)
{

struct hostent* h;
struct sockaddr_in sin;
int s;

if (!(h = gethostbyname(host)))
Return -1;

sin.sin_family = AF_INET;
sin.sin_port = htons(port);
sin.sin_addr = (struct in_addr*)h->h_addr;

if ((s = socket(AF_INET, SOCK_STREAM, 0) < 0)
return -1;

if (!connect(s, (struct sockaddr*)sin, sizeof(sin))) {
close(s);
return -1;

}

return s;
}

gethostbyname() n'est pas réentrante

Une seule adresse possible

IPv4 hardcodé

Copyright Viagénie 2008 14

Établir une connexion TCP
(style version-independent)

int tcp_connect(const char* host, const char* port)
{

struct addrinfo hints, *res, *iter;
int s = -1;

memset(&hints, 0, sizeof(hints));
hints.ai_socktype = SOCK_STREAM;
if (getaddrinfo(host, port, &hints, &res) != 0)

return -1;

for (iter = res; iter; iter = iter->ai_next) {
if ((s = socket(iter->ai_family, iter->ai_socktype,

iter->ai_protocol)) < 0)
break;

if (connect(s, iter->ai_addr, iter->ai_addrlen) != 0) {
close(s);
s = -1;

}
else break;

}

freeaddrinfo(res);

return s;
}

Itération sur plusieurs adresses possibles

Le protocole n'est pas hardcodé

La valeur retournée par getaddrinfo() nous appartient

Copyright Viagénie 2008 15

Écouter sur un port TCP
(vieux style IPv4 seulement)

int tcp_server(unsigned short port)
{

int s;
int true = 1;
struct sockaddr_in sin;

sin.sin_family = AF_INET;
sin.sin.port = htons(port);
sin.sin_addr = INADDR_ANY;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0
 || setsockopt(s, SOL_SOCKET, SO_REUSEADDR,

 &true, sizeof(true)) != 0
 || bind(s, (struct sockaddr*)&sin, sizeof(sin)) != 0
 || listen(s, SOMAXCONN) != 0) {

close(s);
return -1;

}

return s;
}

IPv4 hardcodé

Un seul port possible

Copyright Viagénie 2008 16

Écouter sur des ports TCP
(style version-independent)

int tcp_server(const char* port, int* s)
{

int num = 0;
struct getaddrinfo hints, *res, *iter;

memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_PASSIVE;
hints.ai_socktype = SOCK_STREAM;
if (getaddrinfo(NULL, port, &hints, &res) != 0)

return -1;

for (iter = res; iter; iter = iter->ai_next) {
if ((s[num] = socket(iter->ai_family, iter->ai_socktype,
 iter->ai_protocol)) < 0
 || setsockopt(s[num], SOL_SOCKET, SO_REUSEADDR,
 &true, sizeof(true)) != 0
 || bind(s[num], &iter->ai_addr, iter->ai_addrlen) != 0
 || listen(s[num], SOMAXCONN) != 0)

close(s[num]);
else ++num;

}

freeaddrinfo(res);

return num;
}

Itération sur plusieurs adresses

Array de sockets

On retourne le nombre de sockets

Copyright Viagénie 2008 17

Afficher l'adresse du socket
(vieux style IPv4 seulement)

void print_address(int s)
{

struct sockaddr_in sin;
socklen_t len = sizeof(sin);

if (getpeername(s, (struct sockaddr*)&sin, &len)) != 0)
return;

printf("%s:%hu", inet_ntoa(sin.sin_addr),
 ntohs(sin.sin_port));

}

IPv4 hardcodé

inet_ntoa() n'est pas réentrante

Copyright Viagénie 2008 18

Afficher l'adresse du socket
(style version-independent)

void print_address(int s)
{

struct sockaddr_storage ss;
socklen_t len = sizeof(ss);
char host[NI_MAXHOST];
char port[NI_MAXSERV];

if (getpeername(s, (struct sockaddr*)&ss, &len) != 0)
return;

if (getnameinfo((struct sockaddr*)&ss, len,
host, sizeof(host), port, sizeof(port),
NI_NUMERICHOST | NI_NUMERICSERV) != 0)

return;

printf("%s%s%s:%s",
ss.ss_family == AF_INET6 ? "[" : "",
host,
ss.ss_family == AF_INET6 ? "]" : "",
port);

}

Contient IPv4 ou IPv6 ou ...

Flags pour empêcher lookup DNS

Format spécial pour IPv6

Copyright Viagénie 2008 19

Best Practices for API usage

● Use sockaddr_storage for storing sockaddrs.
● Use sockaddr * for pointer to sockaddrs
● Always pass and carry the sockaddr length (in a

socklen_t) to be fully portable across OS platforms.
● After the getaddrinfo() call, go through the link list of

addrinfo to connect.
● Parse addresses and URL to support both IPv4 and

IPv6 addresses (with port numbers) syntax.
● Do not use IPv4-mapped addresses or old API calls

(gethostbyname2(), getipnode*())

Copyright Viagénie 2008 20

Asteriskv6

Copyright Viagénie 2008 21

Challenges with IPv6 in
Asterisk chan_sip

● Current architecture supports a single socket :
'sipsock'.

● The default source address is hardcoded to 0.0.0.0.
● The RTP socket is initialized from 'sipsock'
● Widespread use of sockaddr_in structures and short

buffers (>256 bytes) to store hostnames and IP
address strings.

● Many instances of similar code for parsing SIP url.

Copyright Viagénie 2008 22

Design choices

● Use multiple sockets
– Initial patch provides 1 socket per address family.
– future work should include multiple sockets for each address

family.

● Version independent when possible
– Whenever possible, do not use sockaddr_in or sockaddr_in6

and never guess at the length of a sockaddr structure.
– Only exception should be for setting socket options.

Copyright Viagénie 2008 23

Code changes
● Replaced all use of sockaddr_in in data structures with

sockaddr_storage.
● Associates a socklen_t element with each

sockaddr_storage.
– the socklen member is only initialized when a sockaddr_in of

sockaddr_in6 structure is copied in the allocated memory...
never when the memory is allocated.

● Use the new ast_vinetsock API

Copyright Viagénie 2008 24

New ast_vinetsock API

● ast_netsock (netsock.h) is currently used in chan_iax,
not in chan_sip.

● ast_netsock has link lists to manage multiple sockets.
● the ast_netsock API was augmented to support IPv6.
● New and modified functions are in the new

ast_vinetsock namespace (defined in netsock.c): no
collision with ast_netsock.

● 3 types of functions are defined in ast_vinetsock:
– Address string parsing.
– Address structure handling.
– Socket management.

Copyright Viagénie 2008 25

String parsing functions

● Parse host:port and address strings in a version
independent way.

● Used for:
– Parsing and validation of configuration files.
– Parsing SIP header fields such as 'contact' and 'via'.

●

● Db store uses ':' between fields. ':' is used in IPv6
address. Enclosing IPv6 address in []. Impact for other
db readers.

Copyright Viagénie 2008 26

Address structure handling
functions

● Initialize sockaddr structures from strings.
● Extract data from sockaddr structures.
● Build host:port and address strings from sockaddr

structures.
● Used for:

– Selecting a source address.
– Printing addresses and host:port strings to logs and console.
– Building SIP/SDP fields from address structures.

Copyright Viagénie 2008 27

Socket management
functions

● Initialize sockets through ast_vinetsock structures.
● Set socket options.
● Bind on sockets and register callback functions.
● Used for:

– Initializing IP listeners

Copyright Viagénie 2008 28

Modifications to sip.conf

● 'bindaddr' now supports the address:port syntax such
as:
– 10.1.1.1
– 10.1.1.1:5060
– [2001:db8::1]
– [2001:db8::1]:5060

● If no 'bindaddr' is specified for an address family, the
wildcard is used (0.0.0.0 and [::]).

● 'host' contains only the address, therefore no brackets.
● 'bindport' is still supported for backward compatibility.

Copyright Viagénie 2008 29

'Hello World' demo

● Uses Kphone as IPv6 SIP UA.
● Register to Asterisk.
● Make a call to play the 'Hello world' sound file.

Kphone
2001:db8::2

Asterisk
2001:db8::1

Copyright Viagénie 2008 30

'Hello World' demo (cont.)

[general]
context=internal
bindaddr=[2001:db8::1]
allow=ulaw

[dev1]
type=friend
host=dynamic
context=internal
disallow=all
allow=ulaw

[dev2]
type=friend
host=dynamic
context=internal
disallow=all
allow=ulaw

Copyright Viagénie 2008 31

'Hello World' demo (cont.)

Copyright Viagénie 2008 32

Bidirectional call demo

● 2 Kphone IPv6 SIP User Agents register to an Asterisk
server.

● Establish a SIP call between the two user agents
through an extension on Asterisk.

Kphone
2001:db8::2
sip:dev1@sip.viagenie.qc.ca

Asterisk
2001:db8::1
sip.qa.viagenie.ca

Kphone
2001:db8::3
sip:dev3@sip.viagenie.qc.ca

Copyright Viagénie 2008 33

Bidirection call demo (cont.)

Copyright Viagénie 2008 34

Impacts

● Files touched:
– netsock.c/.h
– chan_sip
– rtp.c
– Few others

● Some numbers:
– ~25% of functions were changed/touched
– ~ thousand lines changed/touched.
– “Everywhere” in chan_sip, because: networking, logging

(printing addresses) and sip url parsing.

Copyright Viagénie 2008 35

FreeSWITCHv6

Copyright Viagénie 2008 36

FreeSWITCHv6

● FreeSWITCH is IPv6-enabled since 1.0.1
● And there was much rejoicing...

Copyright Viagénie 2008 37

FreeSWITCHv6

● SIP stack is Sofia-SIP, and is IPv6-enabled.
● Needed work:

– mod_sofia glue
● Uses address as string for registrar key. (Good!)
● Some IPv4-specific URI building logic.
● Some IPv4-specific SDP building logic.

– Core: $${local_ip_v6} now contains useful data.
– RTP:

● Used a single port for input and output. Couldn't
transcode network protocols.

● Now opens a second port of other family when needed.

Copyright Viagénie 2008 38

FreeSWITCHv6 (2)

– ACLs
● Was completely IPv4-specific.
● Redesigned for IPv4 and IPv6.
● New in IPv6: scope ID must match.
● Potential for optimization with SSE2 (anyone interested?)
● Not contributed yet, needs more testing.

Copyright Viagénie 2008 39

Lessons Learned

Copyright Viagénie 2008 40

Use Addresses Sparingly

● Call connect() or bind(), then discard the address.
● Anti-pattern:

– Have a host name resolving function return an address.
– Later, use that address.

● Better:
– Have a host name resolving function return a list of

addresses.
– Later, use these addresses.

● Best:
– Combine the connecting/binding with the resolving.

Copyright Viagénie 2008 41

Prepare for Multiplicity

● With version-independent programming, addresses
are never encountered alone.

● Binding to localhost binds an IPv4 socket to 0.0.0.0
and an IPv6 socket to :: (depends on OS).

● Hosts often have A as well as AAAA records. Try all of
them when calling connect().
– Let user choose sorting preference for IPv4 or IPv6.

● SDP offers contain many addresses. Use them all.

Copyright Viagénie 2008 42

Banish Old APIs

● You should never use these:
– inet_addr(), inet_aton(), inet_ntoa()
– inet_pton(), inet_ntop()
– gethostbyname(), gethostbyaddr()

● Not even these: (at least not for addresses)
– htonl(), htons(), ntohl(), ntohs()

● All you need is:
– getaddrinfo() (string to address)
– getnameinfo() (address to string)

Copyright Viagénie 2008 43

An Address is Atomic

● Do not separate address components.
– Anti-pattern:

if (sa->sa_family == AF_INET) {
 addr = ((sockaddr_in*)sa)->sin_addr.s_addr;
 port = ((sockaddr_in*)sa)->sin_port;
} else if (sa->sa_family == AF_INET6) {
[...]
snprintf(uri, sizeof(uri), “sip:%s@%s:%hu”,
 user, host, port);

– Why it is bad:
● Repeated logic for brackets in URL.
● Not version-independent.
● What about IPv6 scope ID?

Copyright Viagénie 2008 44

An Address is Atomic (2)

● Better:

enum {
 URI_NUMERIC_HOST = 1,
 URI_NUMERIC_PORT = 2,
 URI_IGNORE_SCOPE = 4,
 [...]
};

int build_uri(char *uri, size_t size,
 const char *user,
 const sockaddr *sa, socklen_t salen,
 int flags);

Copyright Viagénie 2008 45

Eliminate Timeouts

● Many users already have an IPv6 address that is not
reachable globally. (Local router, zombie Teredo, etc.)

● When connecting to results of getaddrinfo()
sequentially, IPv6 connections will timeout.

● Reordering results so that IPv4 is tried first is a bad
idea because the reverse may also be true.

● Solution: connect in parallel. (harder to implement)
● Even worse: DNS servers may timeout when queried

for AAAA records. Cannot use getaddrinfo().
● Solution: single-family getaddrinfo() calls in parallel.

Copyright Viagénie 2008 46

Eliminate Timeouts (2/2)

● Combine the two previous solutions within a single API
for resolving and connecting.
int fd = resolve_connect(“example.com”, “80”);

● Use worker threads for resolving and connecting in
parallel. (Better: a single thread with nonblocking
sockets and a DNS resolving library.)

● Connect to each address as soon as it is received. Do
not wait for all address families to finish resolving.

● Cancel other connections once one succeeds.
● Disadvantage: this wastes packets. May be significant

in some cases (e.g. lots of short connections).

Copyright Viagénie 2008 47

For Protocol Designers

● Protocols that transport addresses are harder to
implement in a version-independent way.

● SIP, RTSP, and SDP do transport addresses very
much.

● Many ways to encode addresses make it hard:
– By themselves (e.g. c=IN IP6 2001:db8::1)
– With brackets and port

(e.g. Via: SIP/2.0/UDP [2001:db8::1]:5060)
– Implicitly as part of any URI

(e.g. From: <sip:jdoe@example.com>)

Copyright Viagénie 2008 48

VoIPv6 Deployment

Copyright Viagénie 2008 49

IPv6 is not an IPv4 killer

● IPv6 is something that you add to a network.
● Goal: To provide new IPv6 services, not to replace old

IPv4 services.

Copyright Viagénie 2008 50

It starts with purchasing

● Networking and VoIP equipment investments may last
for many years.

● Impending IPv4 address shortage.
● Therefore, make sure new equipment is IPv6-ready.

Copyright Viagénie 2008 51

IPv4 - IPv6 Interoperability

● IPv4 and IPv6 UAs can communicate via a relay.
● Usually relay is a B2BUA (e.g. FreeSWITCH)
● Relaying media may cause unwanted load.
● Consider using a cross-protocol TURN server instead.
● A TURN server is designed for this task.
● Reliability and scalability provided by anycast + load

balancing mechanism.

Copyright Viagénie 2008 52

Conclusion

● Discussed:
– Benefits of IPv6 and why open-source PBXes benefit from

being IPv6-enabled.
– How to port an application to IPv6
– Changes to FreeSWITCH
– Lessons learned
– VoIPv6 deployment

● Try IPv6 now! http://freenet6.net

http://freenet6.net/

Copyright Viagénie 2008 53

Questions?
Contact info:

Simon.Perreault@viagenie.ca

This presentation is available at http://www.viagenie.ca/publications/

References

– [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W. Stevens,
"Basic Socket Interface Extensions for IPv6", RFC 3493, February 2003.

– [RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei, "Advanced
Sockets Application Program Interface (API) for IPv6", RFC 3542, May 2003.

– IPv6 Network Programming, Junichiro itojun Hagino, Elsevier, 2004, ISBN
1555583180.

– Migrating to IPv6, Marc Blanchet, Wiley, 2006, ISBN 0-471-49892-0,
http://www.ipv6book.ca

http://www.viagenie.ca/publications/
http://www.ipv6book.ca/

 Copyright Viagénie 2008

NAT and Firewall Traversal
with STUN / TURN / ICE

Simon Perreault

Viagénie

{mailto|sip}:Simon.Perreault@viagenie.ca

http://www.viagenie.ca

 Copyright Viagénie 2008

Plan

● The problem of NAT and firewalls in VoIP
● How STUN, TURN, and ICE solve it
● Asterisk specifics
● Wireshark traces

 Copyright Viagénie 2008

The Problem of NAT and
Firewalls in VoIP

● Network address translators
(NATs) are common devices
that “hide” private networks
behind public IP addresses.

● Connections can be initiated
from the private network to the
Internet, but not the other way
around.

● Having separate addresses for
signaling and media makes the
situation worse.

 Copyright Viagénie 2008

Server-Reflexive Address

● A NAT device works by associating a public address
and port with a private destination address and port.

 Public Private
 206.123.31.67 : 55123 ↔ 192.168.1.2 : 5060

● Valid for duration of flow
– Meaning of “flow” for UDP?
– Must be kept alive.

● Useful to discover this address.

 Copyright Viagénie 2008

STUN

● Session Traversal Utilities for NAT (STUN): simple
protocol for discovering the server-reflexive address.
– Client: Where do you see me at?
– Server: I see you at 206.123.31.67:55123.

● A STUN server is located in the public Internet or in an
ISP's network when offered as a service.
– Double NATs pose an interesting problem...

 Copyright Viagénie 2008

STUN Binding Request
Source: 192.168.201.128:45897

STUN Binding Request
Source: 206.123.31.67:55123

STUN Flow Diagram

STUN client
192.168.201.128

NAT
192.168.201.2 - 206.123.31.67

STUN server
64.251.14.14

STUN Binding Response
Destination: 206.123.31.67:55123

Payload: 206.123.31.67:55123

STUN Binding Response
Destination: 192.168.201.128:45897

Payload: 206.123.31.67:55123

 Copyright Viagénie 2008

STUN

● It turns out that some NAT devices try to be clever by
inspecting the payloads and changing all references to
the server-reflexive address into the private address.

● STUN2 obfuscates the address by XORing it with a
known value.

● TCP and UDP are supported over IPv4 and IPv6.

 Copyright Viagénie 2008

Server-Reflexive Address

● A client who knows its server-reflexive address could
use it in place of its private address in the SIP
headers.
– Not the intended usage. See sip-outbound IETF draft.

● Intended usage: RTP ports.
● RTP port ⇒ NAT binding ⇒ STUN request

 Copyright Viagénie 2008

Symmetric NATs

● Some NAT devices only allow packets from the remote
peer to reach the NATed peer.
– Address dependent
– Port dependent
– Both
– Implication: knowing server-reflexive address is useless.

● These NAT devices are called symmetric NATs.
– Often “enterprise” NATs ⇒ many devices.
– Significant presence, must be worked around.

 Copyright Viagénie 2008

TURN

● Makes devices behind symmetric NATs reachable.
– Device initiates and maintains connection to relay.

● Traversal Using Relays around NAT (TURN)
– Protocol between NATed device and relay.
– Built on top of STUN.

● TURN server is located outside the NAT.
– On the public Internet
– or in an ISP's network when offered as a service by the ISP.

 Copyright Viagénie 2008

TURN Flow Diagram
TURN client

192.168.201.128 NAT
TURN server
64.251.14.14

SIP peer

TURN Allocate TURN Allocate

Allocate Response
Relayed address:
64.251.14.14:51292

Allocate Response
Relayed address:
64.251.14.14:51292

Keep-alive

SIP Invite
SDP c= line:
64.251.14.14:51292

SIP Invite
SDP c= line:
64.251.14.14:51292

RTP packetTURN Data Indication
+ RTP packetTURN Data Indication

+ RTP packet

Allocate a port

 Copyright Viagénie 2008

Relayed Address

● The address allocated by the TURN server is called
the relayed address.
– TURN server communicates it to TURN client.
– TURN client communicates it to SIP peer.

● The TURN client may use it in the SIP headers.
● Intended usage: RTP ports.
● RTP port ⇒ NAT binding ⇒ TURN allocation

● TURN guarantees communication in all NAT cases
unless there is an explicit firewall policy to prohibit its
use.

 Copyright Viagénie 2008

Disadvantages of TURN

● TURN server is in forwarding path.
– Requires a lot of bandwidth.
– Server must remain available for the whole duration of the

allocation.
– Triangle routing results in longer path.

● Encapsulation.
– Lowers MTU (not so much a problem for VoIP packets).
– Additional headers consume a bit more bandwidth.
– Firewall must inspect payload to discover real sender.

● Allocation must be kept alive.

 Copyright Viagénie 2008

Disadvantages of TURN

● ICMP not relayed.
– No path MTU discovery.

● TTL not properly decremented.
– Possibility of loops.

● DiffServ (DS) field not relayed.
● As of now only IPv4 and UDP.

 Copyright Viagénie 2008

Mitigating Mechanisms

● Availability and scalability provided by anycast.
– Only used for discovery, server must remain up for the

duration of the allocation.

● Channel mechanism for minimizing header size.
– 4 bytes only.

● Permission mechanism enforced by TURN server.
– Only peers previously contacted by client may send data to

relayed address.
– Firewall may “trust” the TURN server, no payload inspection.

● Keep TURN server close to NAT device.
– Offered as a service by ISPs.

 Copyright Viagénie 2008

IPv4 and IPv6
Interoperability

● TURN will also be used to relay packets between IPv4
and IPv6.

● Alleviates load from the B2BUA.
– Designed for relaying performance.
– Anycast ensures scalability and reliability.

● TURNv6 draft still in progress.

 Copyright Viagénie 2008

Numb

● Numb is a STUN and TURN server developed by
Viagénie.
– Supports IPv4 and IPv6 in mixed scenarios.
– Supports anycast.

● Free access at http://numb.viagenie.ca
● To install it in your own network, contact us:

info@viagenie.ca

http://numb.viagenie.ca/
mailto:info@viagenie.ca

 Copyright Viagénie 2008

Connectivity Establishment

● Many addresses may be available:
– Host addresses.
– Server-reflexive address.
– Relayed address.
– Each in IPv4 and IPv6 flavour!
– Each in UDP and TCP flavour!

● Which one to choose?
● Need for an automatic connectivity establishment

mechanism.

 Copyright Viagénie 2008

Interactive Connectivity
Establishment (ICE)

● Conceptually simple.
– Gather all candidates (using STUN/TURN).
– Order them by priority.
– Communicate them to the callee in the SDP.
– Do connectivity checks.
– Stop when connectivity is established.

● Gnarly details:
– Keep candidates alive.
– Agree on priority.
– Reduce delays and limit packets.

 Copyright Viagénie 2008

Peer-Reflexive Address

● Remember: Server-reflexive address useless with
symmetric NAT.

● Address as seen from peer (instead of STUN server)
is peer-reflexive address.
– Works even with a symmetric NAT.

● ...but not two of them (TURN still necessary).
● During ICE connectivity checks, peer-reflexive

candidates are gathered and prepended to check list.
● Information reuse between ICE instances.

 Copyright Viagénie 2008

Examples
STUN server
64.251.14.14
64.251.22.149

206.123.31.67
2620:0:230:c000:67

192.168.201.2

192.168.201.128

NAT + DNS server

DNS server
206.123.31.2
2620:0:230:8000:2

SIP registrar
206.123.31.98
2620:0:230:c000:98

 Copyright Viagénie 2008

Asterisk Specifics

● NAT traversal in 1.6 was greatly enhanced
– Can define internal NATed network (localnet)
– Can determine external address either...

● directly (externip)
● via dynamic DNS (externhost)
● with a STUN client (stunaddr)

● RFC 3581 rport mechanism (nat = yes)
● Don't re-INVITE internal ↔ external calls

(canreinvite = nonat)

 Copyright Viagénie 2008

Deployment

● ISPs are deploying STUN / TURN servers within their
network.

● TURN a part of the IPv6 migration.
● SIP client vendors are implementing ICE.
● B2BUAs also should implement ICE.

 Copyright Viagénie 2008

Conclusion

● Discussed
– The problem of NAT and firewalls in VoIP
– How STUN, TURN, and ICE solve it

● Obtaining a server reflexive address via STUN
● Obtaining a relayed address via TURN
● Telling the other party about these addresses via ICE
● Making connectivity checks
● Obtaining peer reflexive addresses

● STUN / TURN / ICE stack too thick? Use IPv6!

 Copyright Viagénie 2008

Questions?

Simon.Perreault@viagenie.ca

This presentation: http://www.viagenie.ca/publications/

STUN / TURN server: http://numb.viagenie.ca

References:

STUNv1 RFC: http://tools.ietf.org/html/rfc3489

STUNv2 draft: http://tools.ietf.org/html/draft-ietf-behave-rfc3489bis

TURN draft: http://tools.ietf.org/html/draft-ietf-behave-turn

ICE draft: http://tools.ietf.org/html/draft-ietf-mmusic-ice

http://www.viagenie.ca/publications/
http://numb.viagenie.ca/
http://tools.ietf.org/html/draft-ietf-behave-turn

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78

