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Qui suis-je?

● Consultant en réseautique et VoIP chez Viagénie.
● Co-auteur du port de Asterisk à Ipv6

(voir http://www.asteriskv6.org)
● Auteur du port de FreeSWITCH à IPv6

(intégré depuis version 1.0.1)
● Auteur de Numb, un serveur STUN/TURN

(voir http://numb.viagenie.ca)
● Participation à Astricon, Cluecon, SIPit, IETF, etc.
● Développé plusieurs applications VoIP sur mesure.

http://numb.viagenie.ca/
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Cette présentation

● Cette présentation est un mélange de...
– Contenu original en français
– Extraits de présentations faites à Astricon 2006 et 2008 et 

Cluecon 2008 par Simon Perreault et Marc Blanchet

● Mille excuses pour les diapos en anglais!
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Plan
● IPv6
● Why IPv6 and VoIP
● New API
● Asteriskv6
● FreeSWITCHv6
● Lessons Learned
● Conclusion

● NAT traversal si le temps le permet
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IPv6?
● New version of IP:

– fixes IPv4 issues
– adds functionality

● Addresses:
– 128 bits
– written in hex with : as separator; method to compress the 

writing: all zeros = ::
– 2001:db8:1:1::1
– In URL: enclose with []:  sip:jdoe@[2001:db8:1:1::1]:5060
– Loopback is ::1
– Link(Subnet,vlan,...) mask is fixed: /64
– Unique private address space: no collision of private 

networks
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IPv6?
● Addresses (cont):

– Scoped addressing: link scope, site scope. An enabled IPv6 
stack has already an IPv6 address (link scope) on each 
interface, even if no IPv6 external connectivity.

– Multiple addresses per interface: link-scope, global, [site,...]
– No NAT.

● Mobility: keep connections up even when host 
changes IP address

● Autoconfiguration: Stateless address allocation 
without DHCP server. Routers announce the link 
prefix on the link. Hosts use their MAC address for the 
host part of the address

● Integrated IPsec
● Many more features
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IPv6 Market
● IPv4 address depletion: < 25% of remaining address 

space. Predictions of exhaustion for 2009-2011.

● Asia
– Japan: see http://www.v6pc.jp

– China: through NGN. Olympics is important milestone.

● US government:
– Mandating IPv6 for 2008 in all agencies

– DoD is leading

● Providers (short list): 
– Teleglobe/VSNL, NTT, AT&T, GlobalCrossing,... 

– Comcast: can't address all the devices (100M+) with IPv4. 
Deploying IPv6. (DOCSIS 3.0 is IPv6-ready).
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IPv6 Support

● Support on OS (stack and API):
– Same (new) API everywhere!!! ;-)
– Since: Linux 2.4, FreeBSD 4.X, MacOSX 10.2, Windows XP, 

Solaris 8, ...

● Opensource Apps: Apache 2.0+ (1.3 with a patch), 
Sendmail, Postfix, Open SSH, Xfree/Xorg, ... 
– Now Asterisk and FreeSWITCH... ;-)

● Support on network gear: Cisco, Juniper, Checkpoint, 
Quagga/Zebra, ...
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Why IPv6 and VoIP?

● IPv6 and SIP
– delivers direct end-2-end reachability between any host. 
– No NAT, no STUN, no TURN, no ICE, no MIDCOM, = no 

complexity, “just works”.
– True end-2-end media path.
– Much easier to deploy. A VoIP-IPv6 deployment in Japan 

found important cost reductions because of the ease of 
installation and support.

● To have an IPv6-enabled application, such as a PBX, 
need to convert to the new API.
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New API
● New API for IPv6 [RFC3493, RFC3542]

– Makes the application version independent. The stack 
chooses which IP version will be used for that connection.

– A ported application becomes IP version unaware. 
– No change to socket(), bind(), listen(), accept(), connect(), 

recv(), send(), close()...

● Changes:
– Struct hostent  replaced by struct addrinfo

● Addrinfo is a linked list of addresses
● It contains everything needed to initialize a socket.
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New API

● Changes:
– sockaddr record

● sockaddr_in  : IPv4
● sockaddr_in6 : IPv6 only. Do not use.
● sockaddr_storage: version independent for memory 

allocations. 
● sockaddr *: for casting

– gethostbyname() replaced by getaddrinfo()
– gethostbyaddr(), inet_addr(), inet_ntoa() replaced by 

getnameinfo()

● More considerations:
– Parsing URLs: need to take care of the IPv6 syntax (i.e. [])
– Parsing and storing IP addresses
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Exemples de code
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Établir une connexion TCP
(vieux style IPv4 seulement)

int tcp_connect( const char* host, unsigned short port )
{

struct hostent* h;
struct sockaddr_in sin;
int s;

if ( !(h = gethostbyname(host)) )
Return -1;

sin.sin_family = AF_INET;
sin.sin_port = htons(port);
sin.sin_addr = (struct in_addr*)h->h_addr;

if ( (s = socket(AF_INET, SOCK_STREAM, 0) < 0 )
return -1;

if ( !connect(s, (struct sockaddr*)sin, sizeof(sin)) ) {
close(s);
return -1;

}

return s;
}

gethostbyname() n'est pas réentrante

Une seule adresse possible

IPv4 hardcodé
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Établir une connexion TCP
(style version-independent)

int tcp_connect( const char* host, const char* port )
{

struct addrinfo hints, *res, *iter;
int s = -1;

memset( &hints, 0, sizeof(hints) );
hints.ai_socktype = SOCK_STREAM;
if ( getaddrinfo(host, port, &hints, &res) != 0 )

return -1;

for ( iter = res; iter; iter = iter->ai_next ) {
if ( (s = socket(iter->ai_family, iter->ai_socktype,

iter->ai_protocol)) < 0 )
break;

if ( connect(s, iter->ai_addr, iter->ai_addrlen) != 0 ) {
close(s);
s = -1;

}
else break;

}

freeaddrinfo(res);

return s;
}

Itération sur plusieurs adresses possibles

Le protocole n'est pas hardcodé

La valeur retournée par getaddrinfo() nous appartient
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Écouter sur un port TCP
(vieux style IPv4 seulement)

int tcp_server( unsigned short port )
{

int s;
int true = 1;
struct sockaddr_in sin;

sin.sin_family = AF_INET;
sin.sin.port = htons(port);
sin.sin_addr = INADDR_ANY;

if ( (s = socket(AF_INET, SOCK_STREAM, 0)) < 0
 || setsockopt(s, SOL_SOCKET, SO_REUSEADDR,

                     &true, sizeof(true)) != 0
      || bind(s, (struct sockaddr*)&sin, sizeof(sin)) != 0
       || listen(s, SOMAXCONN) != 0 ) {

close(s);
return -1;

}

return s;
}

IPv4 hardcodé

Un seul port possible
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Écouter sur des ports TCP
(style version-independent)

int tcp_server( const char* port, int* s )
{

int num = 0;
struct getaddrinfo hints, *res, *iter;

memset( &hints, 0, sizeof(hints) );
hints.ai_flags = AI_PASSIVE;
hints.ai_socktype = SOCK_STREAM;
if ( getaddrinfo(NULL, port, &hints, &res) != 0 )

return -1;

for ( iter = res; iter; iter = iter->ai_next ) {
if ( (s[num] = socket(iter->ai_family, iter->ai_socktype,
                      iter->ai_protocol)) < 0
         || setsockopt(s[num], SOL_SOCKET, SO_REUSEADDR,
                       &true, sizeof(true)) != 0
         || bind(s[num], &iter->ai_addr, iter->ai_addrlen) != 0
         || listen(s[num], SOMAXCONN) != 0 )

close(s[num]);
else ++num;

}

freeaddrinfo(res);

return num;
}

Itération sur plusieurs adresses

Array de sockets

On retourne le nombre de sockets



Copyright Viagénie 2008 17

Afficher l'adresse du socket
(vieux style IPv4 seulement)

void print_address( int s )
{

struct sockaddr_in sin;
socklen_t len = sizeof(sin);

if ( getpeername(s, (struct sockaddr*)&sin, &len)) != 0 )
return;

printf( "%s:%hu", inet_ntoa(sin.sin_addr),
                  ntohs(sin.sin_port) );

}

IPv4 hardcodé

inet_ntoa() n'est pas réentrante
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Afficher l'adresse du socket
(style version-independent)

void print_address( int s )
{

struct sockaddr_storage ss;
socklen_t len = sizeof(ss);
char host[NI_MAXHOST];
char port[NI_MAXSERV];

if ( getpeername(s, (struct sockaddr*)&ss, &len) != 0 )
return;

if ( getnameinfo((struct sockaddr*)&ss, len,
host, sizeof(host), port, sizeof(port),
NI_NUMERICHOST | NI_NUMERICSERV) != 0 )

return;

printf( "%s%s%s:%s",
ss.ss_family == AF_INET6 ? "[" : "",
host,
ss.ss_family == AF_INET6 ? "]" : "",
port );

}

Contient IPv4 ou IPv6 ou ...

Flags pour empêcher lookup DNS

Format spécial pour IPv6
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Best Practices for API usage

● Use sockaddr_storage for storing sockaddrs.
● Use sockaddr * for pointer to sockaddrs
● Always pass and carry the sockaddr length (in a 

socklen_t) to be fully portable across OS platforms.
● After the getaddrinfo() call, go through the link list of 

addrinfo to connect.
● Parse addresses and URL to support both IPv4 and 

IPv6 addresses (with port numbers) syntax.
● Do not use IPv4-mapped addresses or old API calls 

(gethostbyname2(), getipnode*())



Copyright Viagénie 2008 20

Asteriskv6
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Challenges with IPv6 in 
Asterisk chan_sip

● Current architecture supports a single socket : 
'sipsock'.

● The default source address is hardcoded to 0.0.0.0.
● The RTP socket is initialized from 'sipsock'
● Widespread use of sockaddr_in structures and short 

buffers (>256 bytes) to store hostnames and IP 
address strings.

● Many instances of similar code for parsing SIP url.
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Design choices

● Use multiple sockets
– Initial patch provides 1 socket per address family.
– future work should include multiple sockets for each address 

family.

● Version independent when possible
– Whenever possible, do not use sockaddr_in or sockaddr_in6 

and never guess at the length of a sockaddr structure.
– Only exception should be for setting socket options.
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Code changes
● Replaced all use of sockaddr_in in data structures with 

sockaddr_storage.
● Associates a socklen_t element with each 

sockaddr_storage.
– the socklen member is only initialized when a sockaddr_in of 

sockaddr_in6 structure is copied in the allocated memory... 
never when the memory is allocated.

● Use the new ast_vinetsock API
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New ast_vinetsock API

● ast_netsock (netsock.h) is currently used in chan_iax, 
not in chan_sip.

● ast_netsock has link lists to manage multiple sockets.
● the ast_netsock API was augmented to support IPv6.
● New and modified functions are in the new 

ast_vinetsock namespace (defined in netsock.c): no 
collision with ast_netsock.

● 3 types of functions are defined in ast_vinetsock:
– Address string parsing.
– Address structure handling.
– Socket management.
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String parsing functions

● Parse host:port and address strings in a version 
independent way.

● Used for:
– Parsing and validation of configuration files.
– Parsing SIP header fields such as 'contact' and 'via'.

●

● Db store uses ':' between fields. ':' is used in IPv6 
address. Enclosing IPv6 address in []. Impact for other 
db readers.
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Address structure handling 
functions

● Initialize sockaddr structures from strings.
● Extract data from sockaddr structures.
● Build host:port and address strings from sockaddr 

structures.
● Used for:

– Selecting a source address.
– Printing addresses and host:port strings to logs and console.
– Building SIP/SDP fields from address structures.
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Socket management 
functions

● Initialize sockets through ast_vinetsock structures.
● Set socket options.
● Bind on sockets and register callback functions.
● Used for:

– Initializing IP listeners
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Modifications to sip.conf

● 'bindaddr' now supports the address:port syntax such 
as:
– 10.1.1.1
– 10.1.1.1:5060
– [2001:db8::1]
– [2001:db8::1]:5060

● If no 'bindaddr' is specified for an address family, the 
wildcard is used (0.0.0.0 and [::]).

● 'host' contains only the address, therefore no brackets. 
● 'bindport' is still supported for backward compatibility.
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'Hello World' demo

● Uses Kphone as IPv6 SIP UA.
● Register to Asterisk.
● Make a call to play the 'Hello world' sound file.

Kphone
2001:db8::2

Asterisk
2001:db8::1



Copyright Viagénie 2008 30

'Hello World' demo (cont.)

[general]
context=internal
bindaddr=[2001:db8::1]
allow=ulaw

[dev1]
type=friend
host=dynamic
context=internal
disallow=all
allow=ulaw

[dev2]
type=friend
host=dynamic
context=internal
disallow=all
allow=ulaw
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'Hello World' demo (cont.)
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Bidirectional call demo

● 2 Kphone IPv6 SIP User Agents register to an Asterisk 
server.

● Establish a SIP call between the two user agents 
through an extension on Asterisk.

Kphone
2001:db8::2
sip:dev1@sip.viagenie.qc.ca

Asterisk
2001:db8::1
sip.qa.viagenie.ca

Kphone
2001:db8::3
sip:dev3@sip.viagenie.qc.ca



Copyright Viagénie 2008 33

Bidirection call demo (cont.)
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Impacts

● Files touched: 
– netsock.c/.h
– chan_sip
– rtp.c
– Few others

● Some numbers:
– ~25% of functions were changed/touched
– ~ thousand lines changed/touched.
– “Everywhere” in chan_sip, because: networking, logging 

(printing addresses) and sip url parsing.
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FreeSWITCHv6
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FreeSWITCHv6

● FreeSWITCH is IPv6-enabled since 1.0.1
● And there was much rejoicing...
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FreeSWITCHv6

● SIP stack is Sofia-SIP, and is IPv6-enabled.
● Needed work:

– mod_sofia glue
● Uses address as string for registrar key. (Good!)
● Some IPv4-specific URI building logic.
● Some IPv4-specific SDP building logic.

– Core: $${local_ip_v6} now contains useful data.
– RTP:

● Used a single port for input and output. Couldn't 
transcode network protocols.

● Now opens a second port of other family when needed.
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FreeSWITCHv6 (2)

– ACLs
● Was completely IPv4-specific.
● Redesigned for IPv4 and IPv6.
● New in IPv6: scope ID must match.
● Potential for optimization with SSE2 (anyone interested?)
● Not contributed yet, needs more testing.
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Lessons Learned
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Use Addresses Sparingly

● Call connect() or bind(), then discard the address.
● Anti-pattern:

– Have a host name resolving function return an address.
– Later, use that address.

● Better:
– Have a host name resolving function return a list of 

addresses.
– Later, use these addresses.

● Best:
– Combine the connecting/binding with the resolving.
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Prepare for Multiplicity

● With version-independent programming, addresses 
are never encountered alone.

● Binding to localhost binds an IPv4 socket to 0.0.0.0 
and an IPv6 socket to :: (depends on OS).

● Hosts often have A as well as AAAA records. Try all of 
them when calling connect().
– Let user choose sorting preference for IPv4 or IPv6.

● SDP offers contain many addresses. Use them all.
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Banish Old APIs

● You should never use these:
– inet_addr(), inet_aton(), inet_ntoa()
– inet_pton(), inet_ntop()
– gethostbyname(), gethostbyaddr()

● Not even these: (at least not for addresses)
– htonl(), htons(), ntohl(), ntohs()

● All you need is:
– getaddrinfo() (string to address)
– getnameinfo() (address to string)
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An Address is Atomic

● Do not separate address components.
– Anti-pattern:

if ( sa->sa_family == AF_INET ) {
    addr = ((sockaddr_in*)sa)->sin_addr.s_addr;
    port = ((sockaddr_in*)sa)->sin_port;
} else if ( sa->sa_family == AF_INET6 ) {
[...]
snprintf( uri, sizeof(uri), “sip:%s@%s:%hu”,
    user, host, port );

– Why it is bad:
● Repeated logic for brackets in URL.
● Not version-independent.
● What about IPv6 scope ID?
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An Address is Atomic (2)

● Better:

enum {
    URI_NUMERIC_HOST = 1,
    URI_NUMERIC_PORT = 2,
    URI_IGNORE_SCOPE = 4,
    [...]
};

int build_uri( char *uri, size_t size,
    const char *user,
    const sockaddr *sa, socklen_t salen,
    int flags );
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Eliminate Timeouts

● Many users already have an IPv6 address that is not 
reachable globally. (Local router, zombie Teredo, etc.)

● When connecting to results of getaddrinfo() 
sequentially, IPv6 connections will timeout.

● Reordering results so that IPv4 is tried first is a bad 
idea because the reverse may also be true.

● Solution: connect in parallel. (harder to implement)
● Even worse: DNS servers may timeout when queried 

for AAAA records. Cannot use getaddrinfo().
● Solution: single-family getaddrinfo() calls in parallel.
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Eliminate Timeouts (2/2)

● Combine the two previous solutions within a single API 
for resolving and connecting.
int fd = resolve_connect( “example.com”, “80” );

● Use worker threads for resolving and connecting in 
parallel. (Better: a single thread with nonblocking 
sockets and a DNS resolving library.)

● Connect to each address as soon as it is received. Do 
not wait for all address families to finish resolving.

● Cancel other connections once one succeeds.
● Disadvantage: this wastes packets. May be significant 

in some cases (e.g. lots of short connections).
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For Protocol Designers

● Protocols that transport addresses are harder to 
implement in a version-independent way.

● SIP, RTSP, and SDP do transport addresses very 
much.

● Many ways to encode addresses make it hard:
– By themselves (e.g. c=IN IP6 2001:db8::1)
– With brackets and port

(e.g. Via: SIP/2.0/UDP [2001:db8::1]:5060)
– Implicitly as part of any URI

(e.g. From: <sip:jdoe@example.com>)
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VoIPv6 Deployment
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IPv6 is not an IPv4 killer

● IPv6 is something that you add to a network.
● Goal: To provide new IPv6 services, not to replace old 

IPv4 services.
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It starts with purchasing

● Networking and VoIP equipment investments may last 
for many years.

● Impending IPv4 address shortage.
● Therefore, make sure new equipment is IPv6-ready.
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IPv4 - IPv6 Interoperability

● IPv4 and IPv6 UAs can communicate via a relay.
● Usually relay is a B2BUA (e.g. FreeSWITCH)
● Relaying media may cause unwanted load.
● Consider using a cross-protocol TURN server instead.
● A TURN server is designed for this task.
● Reliability and scalability provided by anycast + load 

balancing mechanism.
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Conclusion

● Discussed:
– Benefits of IPv6 and why open-source PBXes benefit from 

being IPv6-enabled.
– How to port an application to IPv6
– Changes to FreeSWITCH 
– Lessons learned
– VoIPv6 deployment

● Try IPv6 now!    http://freenet6.net

http://freenet6.net/
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Questions?
Contact info:

Simon.Perreault@viagenie.ca

This presentation is available at http://www.viagenie.ca/publications/
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Plan

● The problem of NAT and firewalls in VoIP
● How STUN, TURN, and ICE solve it
● Asterisk specifics
● Wireshark traces
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The Problem of NAT and 
Firewalls in VoIP

● Network address translators 
(NATs) are common devices 
that “hide” private networks 
behind public IP addresses.

● Connections can be initiated 
from the private network to the 
Internet, but not the other way 
around.

● Having separate addresses for 
signaling and media makes the 
situation worse.
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Server-Reflexive Address

● A NAT device works by associating a public address 
and port with a private destination address and port.

                Public                             Private
     206.123.31.67 : 55123  ↔ 192.168.1.2 : 5060

● Valid for duration of flow
– Meaning of “flow” for UDP?
– Must be kept alive.

● Useful to discover this address.
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STUN

● Session Traversal Utilities for NAT (STUN): simple 
protocol for discovering the server-reflexive address.
– Client: Where do you see me at?
– Server: I see you at 206.123.31.67:55123.

● A STUN server is located in the public Internet or in an 
ISP's network when offered as a service.
– Double NATs pose an interesting problem...
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STUN Binding Request
Source: 192.168.201.128:45897

STUN Binding Request
Source: 206.123.31.67:55123

STUN Flow Diagram

STUN client
192.168.201.128

NAT
192.168.201.2 - 206.123.31.67

STUN server
64.251.14.14

STUN Binding Response
Destination: 206.123.31.67:55123

Payload: 206.123.31.67:55123

STUN Binding Response
Destination: 192.168.201.128:45897

Payload: 206.123.31.67:55123
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STUN

● It turns out that some NAT devices try to be clever by 
inspecting the payloads and changing all references to 
the server-reflexive address into the private address.

● STUN2 obfuscates the address by XORing it with a 
known value.

● TCP and UDP are supported over IPv4 and IPv6.
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Server-Reflexive Address

● A client who knows its server-reflexive address could 
use it in place of its private address in the SIP 
headers.
– Not the intended usage. See sip-outbound IETF draft.

● Intended usage: RTP ports.
● RTP port ⇒ NAT binding ⇒ STUN request
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Symmetric NATs

● Some NAT devices only allow packets from the remote 
peer to reach the NATed peer.
– Address dependent
– Port dependent
– Both
– Implication: knowing server-reflexive address is useless.

● These NAT devices are called symmetric NATs.
– Often “enterprise” NATs ⇒ many devices.
– Significant presence, must be worked around.
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TURN

● Makes devices behind symmetric NATs reachable.
– Device initiates and maintains connection to relay.

● Traversal Using Relays around NAT (TURN)
– Protocol between NATed device and relay.
– Built on top of STUN.

● TURN server is located outside the NAT.
– On the public Internet
– or in an ISP's network when offered as a service by the ISP.
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TURN Flow Diagram
TURN client

192.168.201.128 NAT
TURN server
64.251.14.14

SIP peer

TURN Allocate TURN Allocate

Allocate Response
Relayed address:
64.251.14.14:51292

Allocate Response
Relayed address:
64.251.14.14:51292

Keep-alive

SIP Invite
SDP c= line:
64.251.14.14:51292

SIP Invite
SDP c= line:
64.251.14.14:51292

RTP packetTURN Data Indication
+ RTP packetTURN Data Indication

+ RTP packet

Allocate a port
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Relayed Address

● The address allocated by the TURN server is called 
the relayed address.
– TURN server communicates it to TURN client.
– TURN client communicates it to SIP peer.

● The TURN client may use it in the SIP headers.
● Intended usage: RTP ports.
● RTP port ⇒ NAT binding ⇒ TURN allocation

● TURN guarantees communication in all NAT cases 
unless there is an explicit firewall policy to prohibit its 
use.
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Disadvantages of TURN

● TURN server is in forwarding path.
– Requires a lot of bandwidth.
– Server must remain available for the whole duration of the 

allocation.
– Triangle routing results in longer path.

● Encapsulation.
– Lowers MTU (not so much a problem for VoIP packets).
– Additional headers consume a bit more bandwidth.
– Firewall must inspect payload to discover real sender.

● Allocation must be kept alive.
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Disadvantages of TURN

● ICMP not relayed.
– No path MTU discovery.

● TTL not properly decremented.
– Possibility of loops.

● DiffServ (DS) field not relayed.
● As of now only IPv4 and UDP.
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Mitigating Mechanisms

● Availability and scalability provided by anycast.
– Only used for discovery, server must remain up for the 

duration of the allocation.

● Channel mechanism for minimizing header size.
– 4 bytes only.

● Permission mechanism enforced by TURN server.
– Only peers previously contacted by client may send data to 

relayed address.
– Firewall may “trust” the TURN server, no payload inspection.

● Keep TURN server close to NAT device.
– Offered as a service by ISPs.
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IPv4 and IPv6 
Interoperability

● TURN will also be used to relay packets between IPv4 
and IPv6.

● Alleviates load from the B2BUA.
– Designed for relaying performance.
– Anycast ensures scalability and reliability.

● TURNv6 draft still in progress.
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Numb

● Numb is a STUN and TURN server developed by 
Viagénie.
– Supports IPv4 and IPv6 in mixed scenarios.
– Supports anycast.

● Free access at http://numb.viagenie.ca
● To install it in your own network, contact us: 

info@viagenie.ca

http://numb.viagenie.ca/
mailto:info@viagenie.ca
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Connectivity Establishment

● Many addresses may be available:
– Host addresses.
– Server-reflexive address.
– Relayed address.
– Each in IPv4 and IPv6 flavour!
– Each in UDP and TCP flavour!

● Which one to choose?
● Need for an automatic connectivity establishment 

mechanism.
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Interactive Connectivity 
Establishment (ICE)

● Conceptually simple.
– Gather all candidates (using STUN/TURN).
– Order them by priority.
– Communicate them to the callee in the SDP.
– Do connectivity checks.
– Stop when connectivity is established.

● Gnarly details:
– Keep candidates alive.
– Agree on priority.
– Reduce delays and limit packets.
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Peer-Reflexive Address

● Remember: Server-reflexive address useless with 
symmetric NAT.

● Address as seen from peer (instead of STUN server) 
is peer-reflexive address.
– Works even with a symmetric NAT.

● ...but not two of them (TURN still necessary).
● During ICE connectivity checks, peer-reflexive 

candidates are gathered and prepended to check list.
● Information reuse between ICE instances.
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Examples
STUN server
64.251.14.14
64.251.22.149

206.123.31.67
2620:0:230:c000:67

192.168.201.2

192.168.201.128

NAT + DNS server

DNS server
206.123.31.2
2620:0:230:8000:2

SIP registrar
206.123.31.98
2620:0:230:c000:98
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Asterisk Specifics

● NAT traversal in 1.6 was greatly enhanced
– Can define internal NATed network (localnet)
– Can determine external address either...

● directly (externip)
● via dynamic DNS (externhost)
● with a STUN client (stunaddr)

● RFC 3581 rport mechanism (nat = yes)
● Don't re-INVITE internal ↔ external calls

(canreinvite = nonat)
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Deployment

● ISPs are deploying STUN / TURN servers within their 
network.

● TURN a part of the IPv6 migration.
● SIP client vendors are implementing ICE.
● B2BUAs also should implement ICE.
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Conclusion

● Discussed
– The problem of NAT and firewalls in VoIP
– How STUN, TURN, and ICE solve it

● Obtaining a server reflexive address via STUN
● Obtaining a relayed address via TURN
● Telling the other party about these addresses via ICE
● Making connectivity checks
● Obtaining peer reflexive addresses

● STUN / TURN / ICE stack too thick? Use IPv6!
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Questions?

Simon.Perreault@viagenie.ca

This presentation: http://www.viagenie.ca/publications/

STUN / TURN server: http://numb.viagenie.ca

References:

STUNv1 RFC: http://tools.ietf.org/html/rfc3489

STUNv2 draft: http://tools.ietf.org/html/draft-ietf-behave-rfc3489bis

TURN draft: http://tools.ietf.org/html/draft-ietf-behave-turn

ICE draft: http://tools.ietf.org/html/draft-ietf-mmusic-ice

http://www.viagenie.ca/publications/
http://numb.viagenie.ca/
http://tools.ietf.org/html/draft-ietf-behave-turn
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